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Abstract
Gaussian Mixture Models are universal in their
ability to approximate continuous densities and
mathematical tractability has made them very pop-
ular for unsupervised learning. In graph learning,
recent advances propose using the learned statis-
tics of mixture models to infer graph structures
and this methodology has proven great success
in learning connectomes for different brain states
from an fMRI signal. Modeling these fMRI sig-
nals as low dimensional signals of brain region ac-
tivity, we can infer graphs during specific subject
activities such as reading, writing, conversation
or playing music. While connectome learning has
provided strong insights into brain states, under-
standing the spinal cord’s graph structure remains
limited. In this document, we show the inferred
state connectomes of the spinal cord with the un-
supervised Graph Laplacian Mixture Model. We
find laplacians highly correlated with prior knowl-
edge despite a poor signal and show the limits of
spinal cord fMRI by parametrizing the feasibil-
ity of unsupervised clustering with multivariate
Gaussians. Our main findings underscore the im-
portance of having a combination of sufficiently
linearly separable or orthogonal data for Gaussian
mixture modeling and for the spinal cord data an
additional 1.2 euclidean distance between means
or

π

18
rotation of covariance matrices.

1. Introduction
Neurons and axons are the nodes and edges of the graph
structure that integrates information responsible for percep-
tion, cognition, behavior and motor function. Understanding
the connectome or wiring diagram of our central nervous
system is essential for treating neurological disorders like
Alzheimer’s disease (Yu et al., 2021) and restoring spinal
cord sensorimotor functions (Zhang et al., 2022). Recent ad-
vances in diffusion tensor imaging have allowed researchers
to identify full structure of fly brains and human brain re-
gions (Seung, 2024). The study of neural graphs is presented
in two separate modalities: the structural connectome which
relates to the physical wiring of neurons and the functional

connectome which relates to the active graph during a sub-
ject’s state. Functional Magnetic Resonance Imaging or
fMRI is one of the main tools for studying functional con-
nectomes correlated with different states such as resting,
watching a movie or reading. Integrating neuronal activity
for different brain regions and computing the pearson cor-
relation matrix, we can infer a functional connectome for
a time-series of fMRI volumes. In a time series where a
subject’s state is dynamically changing from rest to others,
unsupervised learning techniques such as Graph Laplacian
Mixture Model (Maretic & Frossard, 2020) have been shown
to produce high quality inferred graphs (Ricchi et al., 2022)
correlated with the different states of subjects.

From the central nervous system a lot of studies focus on
the brain’s functional graphs (Preti et al., 2017) and few
target the spinal cord. The spinal cord presents unique set
of constraints for graph inference, including its relatively
small size, high density of interconnected neurons, and its
structural organization into distinct functional regions, levels
and relative contribution to function with the brain. The
spatial and temporal resolution of fMRI pose as a challenge
for extracting meaningful graph structures. In this work,
we investigate the feasibility of unsupervised connectome
learning in spinal cord fMRI using GLMM. We analyze
clustering performance in both real and synthetic data and
identify key limitations due to separability and covariance
properties.

2. Methods
2.1. Data Acquisition

Data for this project originated from spinal cord fMRI ex-
periments (Kinany et al., 2022) involving bilateral wrist
adduction movements of 8 blocks of 18s interspersed with
resting periods of equal duration. fMRI acquisition was
run for an TR = 2.5s and covered four spinal levels C6,
C7, C8 and T1. Regions of interest were identified with 7
PAM50 parcellations (De Leener et al., 2017): Gray Matter
Dorsal, Ventral and Intermediate regions and White Matter
Corticospinal Tract, Fasciculus Cuneatus, Fasciculus Gra-
cilis and Spinothalamic Tract regions. With both left and
right regions this results in a total of 56 regions of interest
(ROIs). The fMRI acquisition was done for 15 subjects on
two separate runs, which leads to design matrix X of shape
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(3750, 56), representing activity across time and regions.

Figure 1. Illustration of Activity Paradigm followed during fMRI
acquistion.

2.2. Method: Graph Laplacian Mixture Model

The Graph Laplacian Mixture Model (GLMM) is a proba-
bilistic framework for clustering high-dimensional signals
that naturally reside on different graphs. This model extends
the traditional Gaussian Mixture Model (GMM) by incor-
porating graph structure. Given a graph G = (V, E ,W )
with N nodes, an undirected weighted adjacency matrix W ,
and laplacian L we define a graph signal (Kalofolias, 2016),
(Kalofolias & Perraudin, 2019) x ∈ RN as a function over
the M nodes. A key assumption in graph signal process-
ing is smoothness, which penalizes signal variations across
strongly connected nodes:

xTLx =
1

2

∑
i,j

Wij(xi − xj)
2. (1)

A more general representation considers a graph filter g(L),
modeling a kernel process:

x = µ+ g(L)w, w ∼ N (0, I), (2)

resulting in:
x ∼ N (µ, g2(L)). (3)

For smooth signals, this is often approximated using the
pseudo-inverse of the Laplacian:

g(L) =
√
L†. (4)

The model as a mixture of multivariate gaussians can be
formalized as follows with γm,k the posterior probability
that signal xm belongs to cluster k

p(xm) =

K∑
k=1

αkN (xm|µk, g
2
k(Lk)). (5)

γm,k =
αkN (xm|µk, g

2
k(Lk))∑K

l=1 αlN (xm|µl, g2l (Ll))
. (6)

We estimate the model parameters via an Expectation-
Maximization (EM) algorithm. We iteratively update the
posterior probabilities γm,k starting for some seeded param-
eters and update the parameters αk, µk, and Lk by maxi-
mizing the expected log-likelihood:

M∑
m=1

K∑
k=1

γm,k

(
lnαk + lnN (xm|µk, g

2
k(Lk)) + ln p(Lk)

)
.

(7)

To infer the graph Laplacian Lk, we impose structural priors
that enforce sparsity and smoothness constraints:

ln p(Lk) = −β1,ktr(1T ln diag(Lk)) + β2,k∥Lk∥2F . (8)

β1 strengthens connectivity by promoting high node degrees.
β2 penalizes excessive off-diagonal weights, encouraging
sparsity. For the rest of document, we use surrogate parame-

ters ∆ =

√
β1

β2
and θ =

√
1

β1β2

2.3. Evaluation Metrics

To evaluate the performance of our GLMM clustering, we
employed both classical clustering metrics and a γ-F1-score
that accounts for the overlap between the derived clusters
and the activity paradigm labels (i.e., whether the subject
was resting or not).

The γ-F1-score is computed as:

TP = max
k∈K

γk >
1

2
∩A (9)

F1 score =
TP

TP + 1
2 (FP + FN)

(10)

where TP, FP and FN correspond to the true positives, false
positives, and false negatives in the binary classification
of rest vs. activity states based on the clustering results
A ∈ {0, 1}N .

Additionally, we utilized the Silhouette Score measuring
cluster separation:

S(i) =
b(i)− a(i)

max(a(i), b(i))
(11)

where a(i) represents the average intra-cluster distance, and
b(i) is the lowest average inter-cluster distance for a given
data point.

2.4. Synthetic Data Generation

We parametrise the feasability of the spinal cord’s clustering
by parametrising the data generation process. We choose
two hyperparameters R and Θ to create multiple clusters
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Figure 2. Illustration of Synthetic Data Generation Parameters R
and θ to simulate Spinal Cord Clustering Feasibility

with different means and orientations and then compare how
well a clustering algorithm can identify these clusters. R is
the parameter regulating the linear separability between clus-
ters, which is the euclidean distance between cluster means
µk. θ is the parameter that characterizes the rotation angle
between clusters, the orthogonality between covariances
or more concretely the angle between covariance matrix
eigenvectors defined via Givens rotations or angles between
flats.

To determine the means and covariance matrices of our
gaussian mixture. We place the first cluster’s mean at the
origin,

µ0 = 0.

For the remaining clusters, we draw random directions uni-
formly by sampling from a standard normal and normaliz-
ing:

z ∼ N (0, Id), µk =
z

∥z∥
· R.

Ensuring the mean vector lies on the surface of a hyper-
sphere for a given radius R.

For the covariance matrices Σk, we first generate a ran-
dom matrix A ∈ Rd×d with entries drawn from a normal
distribution, and then form

Σ = AA⊤ + ϵI.

We also scale Σ to emulate standardized datasets with maxi-
mal variance = 1:

Σ← Σ

max(diag(Σ))
.

Then to systematically rotate the eigenvectors of a given
covariance matrix Σ, we compute the eigen-decomposition
Σ = UΛU⊤, where Λ is the diagonal matrix of eigenvalues,
and U is an orthonormal matrix of eigenvectors. We then
apply a product of Givens rotations to U . A Givens rotation
in the (i, j)-plane by an angle θ has the general block form

(in 2D):

G(i, j, θ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · −s · · · 0
...

...
. . .

...
...

0 · · · s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


Where c = cos(θ), s = sin(θ) and in higher dimensions,
we multiply these Givens rotations into U successively, for
selected pairs (i, j). If we initialize the null rotation as

M = Id×d,

then for each pair (i, j) we define the corresponding Givens
rotation matrix G and update

M ←M G.

The final rotated eigenvector matrix is Urot = U M . The
rotated covariance matrix is then:

Σrot = Urot ΛU⊤
rot.

Lastly, having determined:

• µk: the mean of cluster k,

• Σk: the covariance of cluster k (possibly rotated),

we sample points

xi ∼ N (µk,Σk), i = 1, . . . , nk.

All generated samples are then combined into a single
dataset. An integer label is associated with each sample
indicating its cluster membership and we shuffle the data
points to emulate a synthetic random activity paradigm.

2.4.1. COMPUTING SPINAL CORD θ

To compute an observed data generation’s θ statistic, this is
not as trivial as it’s R parameter which is just the euclidean
distance between the mean activation of the data points of
each state. For θ of two covariance matrices Σa,Σb ∈ Rd×d

of active and rest state with eigenvalue decompositions

Σa = VaΛaV
⊤
a , Σb = VbΛbV

⊤
b .

For each k ∈ {1, 2, . . . }, form the subspaces

Ua = [ va,d, va,d−1, . . . , va,d−k+1 ],

Ub = [ vb,d, vb,d−1, . . . , vb,d−k+1 ].
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Then compute
M = U⊤

a Ub

and let
M = P S,Q⊤

be its singular value decomposition, where S =
diag(s1, . . . , sk). The principal angles θi satisfy

θi = arccos(si).

If all si = 1, the subspaces coincide, and the iteration is
stopped. The final output is the mean of these angles across
all non-collapsed iterations:

Mean Principal Angle =
1

k

∑
θi.

3. Experiments and Results
3.1. Data Analysis

Applying the GLMM to the spinal cord data and I observed
very poor results. Unsatisfying results are caputred by the
probabilities of time points averaged across patients not
aligning with the activity paradigm. I would get low F1-
scores ranging from 0.4 to 0.5. The observed and recurring
behavior of the GLMM with K = 2 was the assignment
of ∼ 95% points to 1 cluster and extremely unbalanced
clusters.

I would observe this same low signal-to-noise ratio for dif-
ferent subsets, slices and transformations of the input data X
such as taking different subject sub-groups, selecting differ-
ent subsets of spinal cord dimensions or regions of interest
and taking the iCAPs (Karahanoğlu & Van De Ville, 2015)
or the derivative of the signal to find perhaps first-order
clusters. I also did shallow grid searches to optimize the 3
main hyper-parameters {K,∆,Θ} where Θ relates to the
average degree of the graph, arriving at similar conclusions.

Following these results, I did some exploratory data analysis
to verify the presence of a signal in our data. We can see on
Fig. 3 (A and B) traditional functional connectivity matrices
and can see visual differences in the correlations of regions
of interest between the two. I also computed the pearson
correlation of every dimension separately with the activity
paradigm observed the p-value of this statistic. In 3.C we
can see the distributions data for each dimension ordered in
decreasing order of significant correlation with the acitivity
paradigm. In our data, the C6 Left Ventral Gray Matter
Region is the most significantly correlated with the activity
paradgim with a p-value = 6.7 × 10−5. If we reduce the
dimensions across level and left and right regions, and sort
the dimensions in increasing order of significance, we get
the following 1. Where we see very coherent results where
the Ventral and Intermediate Gray Matter regions are the
most significantly correlated and the dorsal Gray Matter

a b

c

Figure 3. Empirical Functional Connectivity and Data Distri-
bution. A Pearson Correlation Matrix of time points of all patients
in wrist rotation. B Pearson Correlation Matrix of time points of all
patient resting. C Visualization of Data Distribution per dimension
colored with the activity paradigm where blue is rest and orange is
active time points.

is the least even though it passes the classical significance
α = 5× 10−2 threshold but not the Bonferroni correction.

ROI V CST I FG FC SL D

P-Value 0.0 5.2× 10−5 1.02× 10−4 2.8× 10−4 1.01× 10−2 1.2× 10−2 4.1× 10−2

Table 1. P-Values of Pearson Correlation of Spinal Cord Re-
gions of Interest with Activity Paradgim, (V: Ventral, I: Interneu-
rons, D: Dorsal Gray matters)

Even though these results were statistically significant, visu-
ally the two distributions of fMRI signals for active and rest
states (Fig.4) show the spinal cord data organised as two
superposed gaussians.

a b

Figure 4. Organization of spinal cord data for different statesA.
Histogram of BOLD activity of Gray Ventral Matter B. Scatter of
Ventral Gray Matter versus White CST

3.2. GLMM and Low Signal

Following these results, I conducted a fine-grained grid-
search of our GLMM’s hyper-parameters for the ranges
of K = [2, 7], Θ = [1, 55] and log range for delta
log(∆) = [−3, 2] as delta is scaling ratio of two other
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hyper-parameters.

a

b

Figure 5. Optimization of GLMM Parameters A. Gridsearch
visualization colored with the F1-score of each GLMM run for
each setting. B. γm,k or probability estimates of cluster K=1 for
the best hyper-parameters K = 6,∆ = 0.25,Θ = 44.

I fitted a linear regression model onto the results of this grid
search or cube in Fig.5 with the hyper-parameters as the
predicting or independent variables and the F1-score as the
dependent variable. I found significant but coefficients for
ever hyper parameter close to 0.

F1 ≈ β0 +

n∑
i=1

βi · hi ≈ β0, where βi ≈ 0 ∀i

This is not a definitive proof of the unfeasability of our
task as our hyper-parameters and F1-score could be non-
linearily explainable, however learning the null plane shows
there is no observable linear trend between our clustering
working well with respect to the activity paradigm and our
hyper-parameters.

Interestingly, if we fit linear models to optimize for the
Silhouette Score or how balanced the resulting clusters are
(how equally distributed the data points are in each cluster
with respect to K), we increase the explainability of our
model from R2 = 0.02 to R2 = 0.12 and R2 = 0.52
respectively.

In Figure 6, we see the learned parameters for the best
GLMM run with an F1-score of 0.65. Despite this low
signal, we see a very coherent adjacency matrix and learned
activation means 6.A 6.C. With a strong intra-spinal-level
connectivity in adjacency matrix and high activity of the
ventral gray ventral matter regions in the means.

Lastly, I also tried K-Graphs (Araghi et al., 2019) algorithm
and initializing the GLMM with the Functional Connectivity
matrices and observed similar unsatisfactory results and the
algorithm drifting away from the solution.

a b

c

Figure 6. Learned Cluster K = 1 (Active/Wrist Rotation)
Statistics for Best GLMM Hyper Parameters A. Learned Adja-
cency Matrix B. Learned Mean Activations C. Reduced Learned
Means

3.3. Synthetic Data and Data Generation

Given the challenges observed in real data, we explore syn-
thetic data modeling to analyze clustering feasibility. Figure
4 shows the spinal cord data between active and rest states
being organised a two superposed gaussians. If this were
truly the case, the task of learning unsupervised Laplacians
and means describing the two states would be trivially im-
possible. To verify this, I generated synthetic data clusters
with two generation process parameters R and θ to simu-
late an fMRI signal from the spinal cord and observe the
GLMM’s performance on the task.

I observed a phase transition of the feasability of the GLMM
7 varying generating two synthetic data clusters with ranges
of parameters R = [0, 3] and θ = [0, 60] where theta is in
degrees for the orthogonality of the covariance matrices. I
ran each setting 5 times and averaged the F1-score of the
GLMM solving the synthetic clustering tasks. We see a
rather sharp feasability transition in when the GLMM can
solve the clustering task and cannot. Furthermore, we unfor-
tunately see that computing the same statistics for our real
data, the spinal cord is close to feasability but corresponds
to a F1-score 0.57. This matrix gives a feasability look up
table for unsupervised clustering tasks.

4. Discussion & Conclusion
If we can model the spinal cord’s data distribution between
active and rest as a gaussian mixture parametrised with
R and θ, we see that we a get a very small R = 0.45 and
θ = 30 where independently a minimum R > 2.4 or θ > 40
is needed. The latter conditions intuitively makes sense as
the 99% confidence interval of a gaussian distribution is
approximately 3σ or 3 standard deviations away and 40
degrees is close to

π

4
in radians. In higher dimensions, the

notion of angles between eigenvectors, flats and orthogo-
nality between covariance matrices seems to be less related
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Figure 7. Heat Map of two-dimensional GLMM Feasability
Transition and Data Generation Parameters of Spinal Cord

to an angle and more to an overlap between distributions.
The transformation for one multivariate normal distribution
to overlap another is a simple rescaling of the covariance
matrix which can also be given by our Givens rotation. I
think these results provide convincing arguments to justify
the failure of the GLMM on the spinal cord’s data.

In conclusion, I think the organization of the spinal chord’s
functional connectome we dervied from the GLMM of wrist
activity 6 is correct despite the weak signal and shows logi-
cal results of high intra-level connectivity and activity being
dominated by ventral and intermediate gray matter regions.
I also think that with synthetic data, we showed the difficulty
of this task comes from both the data and the GLMM’s mod-
eling capabilities. The assumptions on the data being made
that spinal cord activity corresponds to the translation and
the rotation of a high dimensional ellipsoid of the resting
state.

Our findings suggest that future research should focus on
improving data quality of spinal cord acquisitions with a
stronger difference in means between states, explore other
unsupervised methodologies with different assumptions.

Another synthetic feasability transition that would be inter-
esting to explore, would be the one of data sufficiency. I
ran all my synthetic data generations with 4000 sampled
points to emulate the spinal cord’s data sufficiency, however
low data regimes are noisy. Exploring methods of mean
and covariance estimation for small data samples and noise
reduction method, that are well document perhaps in finance
like Ledoit-Wolf’s shrinking or more recent approaches may
be interesting. As in the spinal cord, we are trying to es-
timate a gaussian mixture of two cluster’s statistics (two

means and laplacians) in d = 56 dimensions which is O(d2)
with 3750 > 3136(= 562) ∼ O(d2) data points, and we
would alteast need another order of magnitude to estimate
our statistics more precisely.
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